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Abstract—The stress singularity at the vertex of an anistropic wedge has the form r™*F(r, 9) as r -0 where
0<£<1and F is a real function of the polar coordinates (7, 8). In many cases, F is independent of 7. The
explicit form of F(r, 8) depends on the cigenvalues of the elasticity constants, called p here and on the
order of singularity x. When « is real, £ = x. I « is complex, £ is the real part of x, The p's are all complex
and consist of 3 pairs of complex conjugates which reduce to +i when the material is isotropic. The
function F depends not only on p and «, it also depends on whether p and « are distinct roots of the
corresponding determinants. In this paper we present the function F(r, 8) in terms of p and « for the cases
when p and x are single roots as well as when they are multiple roots. The relationship between the
complex variable Z introduced in the analysis and the polar coordinates (, 8) is interpreted geometrically.
After presenting the form of F for individual cases, a general form of F is given in eqn (74). We also show
that the stress singularity at the crack tip of general anisotropic materials has the order of singularity £ = 1/2
which is at least a multiple root of order 3. The implication of this on the form F(7, 0) is discussed.

1. INTRODUCTION

For isotropic materials, use of the biharmonic function, or the Airy stress function, seems to be
the universal approach in the analysis of stress singularities[1-4]. There appears to be no
universal approach in analyzing the stress singularities in anisotropic materials. Lekhnitskii(5]
introduced two stress functions to analyze general anisotropic materials. His approach was
used by Wang and Choi[6] to study the thermal stresses at the interface in a layered composite.
Green and Zerna[7] employed a complex function representation of the solution. Their
approach was used by Bogy([8] and Kuo and Bogy[9] in conjunction with a generalized Mellin
transform to analyze stress singularities in an anisotropic wedge. It should be mentioned that
plane deformation was assumed in[7-9] and hence the material property was assumed to be
symmetric with respect to the plane of deformation.

In this paper we use the approach of Stroh[10] whose analysis was further developed by
Barnett et al. (see, e.g. [11]) to study the surface waves in anisotropic elastic materials.
An excellent review article on surface waves in anisotropic elastic materials was given
by Chadwick and Smith[12). Although no stress singularities were studied in{10-12], their
approach is used here to find the stress distribution at an anisotropic wedge. A recent study by
Dempsey and Sinclair [3] on isotropic elastic wedge problems shows that the singularity analysis
can be accomplished without resorting to the Mellin transform even when the boundary
conditions are not homogeneous [4]. Following their analysis and using the approach of Stroh,
we present here possible forms of stress distribution near the vertex of a wedge or a composite
wedge of anisotropic materials.

The stress distribution near the vertex of a wedge or a composite wedge depends on whether
the eigenvalues p of the elasticity constants are distinct. It also depends on whether the order
of singularity « is a single or multiple root. The purpose of this paper is to show how one can
derive the form of stress distribution when p and/or « are not single roots. We also show the
geometrical meaning of the complex variable Z in terms of the polar coordinates (r, 6).

Finally, as an application, we consider the stress singularity at a crack tip of general
anisotropic materials.

2. BASIC EQUATIONS

In a fixed rectangular coordinates x;, (i = 1,2, 3), let u;, o;; and ¢; be the displacement, stress
and strain, respectively. The continuity condition, the stress-strain law and the equations of
equilibrium can be written as

€ = (auiIan + au,/axi)IZ (1)
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Tij = Cijui€pi )
30’;;/ ax; =0 3

where
Cipt = Ciirt = Cijtik = Clij @)

are the elasticity constants of the anisotropic material. Unless stated otherwise, repeated
indices imply summation.

We assume that u; and o; are independent of the x;-coordinate. Hence we assume that

Z=x+px, (5)
u; = vf(2) (6)
oy =13 df(Z)dZ M

where f is an arbitrary function of Z and p is an eigenvalue of the elasticity constants to be
determined shortly. v; and 7; are independent of x, and x, but they depend on the eigenvalue p.
Substitution of eqns (6) and (7) into eqns (1)-(3) yields the results

75 = (Cij1 + PCiik2) Vg ®
Dyv, =0 9)

where
Dy = ¢y + plCinia + i) + PPz (10)

For a non-trivial solution of v, the determinant of D, must vanish. This provides the
eigenvalues p. Equation (9) then provides the eigenvector v;.

) 3, EIGENVALUES AND EIGENVECTORS OF THE ELASTICITY CONSTANTS
In view of eqn (4), c;; has only 21 constants. If we write eqns (2) and (4) as

0 = Cij€j, Cj =Cji (11)
where

C1=0yny, 1=0n 03503, }

Ga=0p, Os=013, O¢= 0y, (12a)
€, =€y, €E=€n €€y, }
=263, €=2€3, €=2€; (12b)
the coefficients in eqn (10) can be written as
(C1y Cis €15
Qik=Cii =] Cot Co6 Cos
| €51 Cs6  Css |
FCis €12 Cia (13)

Ri= ciua=| Co6 Ca2 Ces
Cse Cs2 Csa |

Ce6 Co2 Cou
Ta=Cana=| €6 Cn Cu
| C46 Ca2 Cas
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Equation (10) can then be written as
Dic = Qu + p(Ri + Ri) + p*Ti (14)

and vanishing of the determinant D; means

Clt2pCiotpics Ciot P(Cia+ Ces) +picas Cis+Pp(Ciat Cse)+PpPeas
Ciet P(Ciat Co) + PPCas Coo+2pCrst+Ppicss Css+ p(Cas+ Cag)+ pPcas | =0. (15)
Cis+P(Crat Cse) + PPcas Csot P(Cas+ Cas)+ pPCas Css+2pCas+ pPeas

Equation (15) provides six eigenvalues of p.
For each of p the associated v;'s are obtained from eqn (9). In general, v, (i = 1,2, 3) are all

non-zero. Hence, u,, u, and u; are coupled.
As to 7;, we let j = 1 and 2, respectively, in eqn (8) and use the notations of eqn (13) to obtain

751 = (Qu + pRy)v; }
b= (Rlu + pT,'k)Dk : (16a)
It follows from eqns (9), (14) and (16a) that
T+ pria=0 (16b)
and hence
TR2=—pT2, Th= pz.rn, TI3=—PT. (16C)

Therefore, of the six components 7;, all we need is 12, 33 and 7. They are obtained from eqn
(8) which can be casted in the following form:

7i = (Ci1 + PCie) Vi +(Cis + PCi)va + (Cis + peia) Vs, amn

where 7; have been written as 1; using the same rules defined in eqn (12a) for 0. Equation (17)
is valid for i = 1-6 although all we need is 7,, 7; and 7,

Notice that since Qi and T;; are symmetric, so is Dy. Notice also that ¢3;, (j =1,2,...,6) are
not present in eqn (15). Therefore, the eigenvalues p are independent of these elastic constants.
In fact, the stress singularities are also independent of these elastic constants.

Equation (15) is a sextic equation in p. If the strain energy is positive definite, it can be shown
that p cannot be real{10, 12]. Therefore, we would have 3 pairs of complex conjugate roots for
p.

When the material property is symmetric with respect to the (x,, x3) plane or to the (x,, x3)
plane, eqn (15) reduces to a cubic in p2[10]. Since every cubic has at least one real root, one of
the p’s will be purely imaginary when (x,, x3) or (x;, x,) is a plane of symmetry.

4. UNCOUPLING OF u3 FROM u; AND i
When the material property is symmetric with respect to the (x,, x;) plane, we have

Cla=C15s=C24= C2s = C34 = C35= C4s = Cs6 =0, (18)

Equation (15) then reduces to

Cii+2pcis+ pices Cie+ p(Cr2+ Ce) + pPeze 0 -0 (19)
Cis+P(Cia+ Ces) +P2Cas  Cos+2pCas+ pien 0 .
0 0 Css+2pCas+ picu

Therefore, instead of a sextic we have a quartic equation and a quadratic equation in p.
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If p is a root of the quartic equation, we see from eqns (9) and (19) that u; = 0. Moreover, eqn
{17) shows that 73 = 153 = 0, Hence, we have a plane deformation.
Similarly, if P is a root of the quadratic equation, vy = v, =0and 7, = 153 = 133 = 7, = 0, This
is an anti-plane deformation,
Therefore, when eqn (18) holds, the plane deformation and the anti-plane deformation are
uncoupled. Since the system is linear, we may consider them separately when eqn (18) holds.
As an example, consider isotropic materials in which the only nonzero c; are

Cu=Css=Ce=
CR=C=Cp=Cu=Cin=Cp=A (20)
tu=Ctnp=cun=A+2u

where A and p are the Lame constants. Equation (19) reduces to
wXA H2u)pi+1P =0 210
and hence p = % is a triple root. However, since u, is uncoupled from u, and uy, p=tiisa

double root for plane deformation and a single root for anti-plane deformation. The eigen-
vectors v; and 7; are obtained from eqns (9) and (17). We have, for p =,

1 1§ 0
v;=§}-!:i}, o= i-lo:t (223)
1o 000
0 001
u‘zl 0 sy W= 0 0 i} (22b)
k11 1 i 0

5. GEOMETRICAL INTERPRETATION OF Z=x+px;
Let a and B be, respectively, the real and imaginary part of p so that

for plane deformation and

for anti-plane deformation.

p=a+Bi B>0 (23)

We assumed B >0 because the conjugate of p will have the negative imaginary part. Using the
polar coordinates with the origin at x; = x, =0, we have

x;=rcos8, xy=rsiné, (24)
Hence,
Z=x;+pxa=X+iY =rpe® 25

where
Xlr=cos@+asind=pcosy
Yir=Bsing=psiny (26)
p* =(cos 8 +a sin 0)*+ B?sin®0 | .

It is not difficult to show from eqns (24)~(26) that a unit circle in the (x;, x;) plane maps an
ellipse in the (X, Y) plane, Fig. 1. If the (x,, x;) plane is a stretchable sheet, one obtains the
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Fig. 1. Geometrical interpretation of Z = x,+ px, = rp ¢¥.

ellipse by first stretching the circle uniforly B units in the x;-direction and then shear the sheet
with the x;-axis fixed until point b displaces a unit horizontally. From point a in (x;, x;) and
(X, Y) planes we see the geometrical relationship between 6, p and §. From eqn (26), notice
that p and ¢ depend on 6 and p but are independent of r. Notice also that

p=1, ¢=06, até=0, =m (272)
If p is purely imaginary, we also have, in addition to eqn (27a),
p=B,y=6, at6=zxn/2, +37/2 whena=0. (27b)

For isotropic materials, p = +i is a multiple root of order 3. Thus the ellipse in the (X,Y)
plane reduces to a unit circle. Hence,

p=1, ¢=9, (28)
and
Z=x,+ix=re" 29)

which is the well-known complex coordinate for (x), x,) in two-dimensional elasticity problems
of isotropic materials.

6. STRESS DISTRIBUTION NEAR THE VERTEX WHEN p's ARE DISTINCT
To find the stress distribution and the stress singularities at the vertex of a wedge, we choose

2=z (30)

1-«
where « is the order of singularity to be determined by the boundary conditions. As we
mentioned earlier, the eigenvalues p are all complex numbers and consist of three pairs of

complex conjugates. In this section we assume that the cigenvalues are distinct. Using eqn (30)
in eqns (6) and (7) for all eigenvalues and forming a linear combination of them leads to

Uy =(AwZ" ™ + B2 (1 - k) +- - 61)
oy=AnZ™" +B|‘fu2-' ton (32)

where A,, B,,... are constants which may be complex and an overbar denotes a complex
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conjugate. For simplicity only the terms associated with one pair of eigenvalues are written
explicitly to avoid introducing an additional subscript for the eigenvalues. The dots denote
terms associated with the remaining two pairs of eigenvalues.

It should be pointed out that v, as given by eqn (9) is not unique and can have an arbitrary
multiplicative constant. The constants A, and B, in eqns (31) and (32) represent this arbitrary
multiplicative constant.

For a wedge or a composite wedge, by substituting eqns (31) and (32) in the boundary
conditions (which include the interface conditions if the wedge is a composite), one obtains a
system of linear algebraic equations in A, B,, ..., which may be written as

Kici = qi (33

where Kj; is a square matrix which depends on «, c; is a column matrix whose elements are A;,
B,,..., and g; is a column matrix which depends on the boundary conditions. If the boundary
conditions are homogeneous, g; = 0. In this case, a nontrivial solution exists if the determinant
of K;; vanishes. The roots of this determinant provides the values for «. Let

k+ &+ (34a)

where £ and 7 are real. If 0 < ¢ <1, we have a singularity at r = 0.

Since u; and oy are real, only the real parts or the imaginary parts on the right-hand sides of
eqns (31) and (32) should be considered. They will have different expressions depending on if
the root « is real or complex. To this end, we write v; and 7; as

v;=; C'a‘, T = b e'bi (34b)
where v, a;, t; and b; are real and repeated indices do not imply summation here.

(a) k=¢, real
It follows from eqn (25) that the real parts of eqns (31) and (32) can be written as

u; = (rp) ~*v{M, cos [a; + (1 - &)Y] + Ny sinfa; + (1 - E)PI(1 - £)+ - - - (35)
i = (rp)"*t;{M, cos (b; — &) + N, sin (b — &p)} + - - - (36)

where M;, N,,... are related to A, B, ... and are real. The imaginary parts of eqns (31) and
(32) provide no new expressions.

(b) x = ¢+ in, complex

When « is a complex root there is no loss in generality in assuming n >0 because if « is a
root, so is K. We then have

Z™ = (rp eyt = (rp)Fe™ e ®(rp) ™"
= (,.p)-t e™ g iEp+ninto) (37)

The real parts, or the imaginary parts of eqn (32) now become
o, = (rp) " ty{e™(MT cos ¢~ + Ny~ sin i) + € ™(M;* cos ¢;* + Ny sin ¢ )} +- -~ (38)
where
& = by — & = ln (rp) (39)
and M,*, N, are real constants and are related to A; and B,. A similar equation may be written

for u. We see that g is oscilatory and unbounded as r—»0. As expected, eqn (38) reduces to
eqn (36) when 7 =0.
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In the sequel, we will consider only the cases in which « is a complex. The solution for a real
x is deduced by letting n =0.

7. STRESS DISTRIBUTION NEAR THE VERTEX WHEN p IS A DOUBLE ROOT

When p is a double root of eqn (15), we have only two pairs of distinct eigenvalues instead of
three. It is not difficult to see that, if

u=u,Z""(1-x) (40
=12 @1

are the solutions corresponding to the double root p, so are

t-x
Lk per Ltz
| P —x
= '1'__,( u,-Z' + U;Z Xa (42)
oy =12 =kl "%y 43

where a prime stands for differentiation with respect to p. Since

x2=(Z - Z)(p - §) = (Z - Z2)/(2Bi) 44
we have
Y (0 SRRV B P
;= (1 o u,-)z‘ 2& L iz @5)
o = (T;j Zﬁ T.,)Z““ ZB T.IZZ“"“ (46)

v}and 7}; are obtained by differentiating eqns (9) and (8) with respect to p:
D,—kui + D:’k”l =0 (473)
7 = (s + PC)Vk + Cipatse (47b)

The existence of a solution for v, and v} from eqns (9) and (472) will not be discussed here.

Since a linear combination of two independent solutions is also an independent solution, we
will linearly combine eqns (40) and (41) with eqns (45) and (46), respectively, such that the term
4" is eliminated. Therefore, the second pair of the solution in eqns (31) and (32) when p is a
double root may be written as

= As{(y; + 2Biv)Z" (1 - k) - vZZ )
+ By{(5; - 2Bis)Z" (1 - x) - 6:ZZ7*} (48)

= Af2BitiZ < + xyZZ ™~}
+ By~ 2BiF, 2 + k7, ZZ ) @9)

where A,, B are arbitrary constants.

Notice that if v}and 7/; are solutions of eqns (47), so are v+ A*v; and 7; + A*r; where A* is
an arbitrary constant, It can be shown however that this does not generate additional arbitrary
constants and the constants A,, B, A; and B, introduced in egns (31), (32), (48) and (49) are
sufficient. One could exploit this non-uniqueness feature to find a s:mpier solution for v} and 7,

The real or imaginary parts of eqn (49) can be written down using eqn (37). The Z™* and Z™*
terms are similar to eqn (32) and hence would yield the expression given by eqn (38). The
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remaining terms in eqn (49) yield the following new expression:

i = (rp) " “ty{e ™My cos (¢~ = 2¢) + Ny sin (95 — 2¢)]
+e™™[M," cos (¢ — 2¢) + No* sin (¢ — 2¢)]} (50)

where ¢ are defined in eqn (39) and M,*, N, are related to Az, B, p and . Equation (50)
applies to the case when « is complex. For a real «, we simply let n =0,

8. STRESS NEAR THE VERTEX OF AN ISOTROPIC WEDGE
For isotropic materials, p = + i is a triple root. However, since u; is uncoupled from u, and u,
for isotropic materials, p is actually a double root when we consider #; and u; only. Hence the
previous section on a double root p applies to isotropic materials in plane deformations. We
will consider plane deformation and anti-plane deformation separately.

Plane deformation
If we use eqn (22a) in eqns (47), a solution for v} and 7 can be written as

_1fa-2mi , [-i 0o o
”i"‘zp‘ % b Ti= 0 - 0 (31
0 0 0 =-20-k)
where
A+
2k = it 52)

The solution for u; and o;; are obtained by combining the r.h.s. of eqns (31) and (32) with (48)
and (49), respectively. Introducing the new constants A, B, C, D by

A =B, =(A+iB)2, Ay=By=(C+iD)2 (53

and using eqns (29), (22a) and (51), we obtain

= (;"“ {TA - C(1 - 4k)] cos (1= k) — [B ~ D(1 - 4k)] sin (1 - k)¢
~ (1= x)[C cos {1+ )8 + D sin (1 +«)81} {54a)
U= 2“(: ){ [A + C(1—4k)] sin (1= k)8~ [B+ D(1 —4k)] cos (1 - x)8
— (1= x)[C sin(1+x)8 = D cos (1+«)8]} (54b)
o= r*{(A+2C)cos k8 + (B +2D) sin k8 + k[C cos (2 + k)6
+ D sin (2 4+ x)81} (55a)
on=r*{-(A-2C)cos k8 —(B —2D)sin xb
- k[C cos 2+ )8 + D sin 2+ x)8]} (55b)
o12= r={A sin k6 — B cos k8 + x[C sin 2+ x)8 — D cos 2+ x)8}} {55¢)
o3 = r-4(1 — x){C cos k8 + D sin «6}. (55d)

The other components of u; and oy vanish. In terms of the polar coordinates, eqns (54) and
(55a—c) are transformed into the following well-known expressions{1]:

=3 (i ){Acos(z k)9~ Bsin(2—x)6

~(2 -k ~4k)[C cos k8 + D sin x8} {56a)
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=5 (; - Ty~ Asin (2= K18~ B cos 2~ )8

+(x — 4k)[C sin x8 — D cos x8]} {56b)
o, =r"{Acos(2—x)8—Bsin(2~ )8

+ (24 k)[C cos k8 + D sin x0]} (57a)
s =1 *{~ Acos(2—«)0 + B sin (2~ x)8

+{2-k)[C cos k6 + D sin 91} (57b)
gp=r"{~Asin(2-«)8-Bcos(2—«)8

+ x[C sin x8 — D cos x6]}. {57c)

Anti-plane deformation

For anti-plane deformation, p = = is a single root and hence eqns (31) and (32) apply. Using
eqns (22b) and (29), we have

]-

U= Ml ){A cos (1~ )8 - B sin (1 - x)6} (58)
o3 = r *{A cos k8 + B sin x6} (59a)
oy = r*{A sin «8 — B cos x6}. (59b)

In terms of the circular cylindrical coordinates, eqns (59) are replaced by the known
solution[13]:

o =r "{Acos{1—«x)6— B sin(l—x)6} (60a)
on =r"{—Asin(1-«x)8 ~ B cos (1 - x)8}. (60b)

9. STRESS DISTRIBUTION NEAR THE VERTEX WHEN p IS A TRIPLE ROOT

We have not seen an example other than isotropic materials for which p is a triple root. If
there is one, and if u; is not uncoupled from u; and u,, we see that a third independent solution
is

w=pt @{ wZ'™} &)
g;,! {nZ™} (62)

Following a similar procedure in deriving eqn (50), the real expressions for the third in-
dependent solution when p is a triple root can be obtained from eqn (50) with 2y replaced by 4y
and the subscripts 2 replaced by 3.

10. STRESS NEAR THE VERTEX WHEN « IS A DOUBLE ROOT

Up to now, we tacitly assumed that « is a single root of the determinant of K; and hence,
other than a multiplicative constant, the homogeneous equation of egn {33) has a unique
solution for ¢c; whose elements are the coefficients A,, B,,... If x is a multiple root, then A,,
By, ... may not be unique and we have other new solutions.

Let x be a double root of the determinant K;; defined in eqn (33) with g; = 0. Then, not only
eqns (31) and (32) are the solutions, but also are

- d —A—. -x d{ B I-x s
U u‘dx{l xZ }+v'dx P KZ }+ (63)

0y =y g AAZ ™} Fy e (B2 (64)
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Since
- aix (AZ-) = %—’: 12 - AnZ~InZ, (65)

the first term on the right is essentially the same as the first term of eqn (32). The second term
provides a new solution for o; when « is a double root:

oy = Am;Z“‘ InZ+ Bgﬁ;Z"‘ In Z (66)

The real or imaginary parts of eqn (66) have different expressions depending on whether p is a
single root or a muitiple root.

(a) p is a single root
When p is a single root, the real or imaginary parts of eqn (66) have the expression:

oy = (rp) ¥ty {e ¥ [M; (In (rp) cos ¢ — ¥ sin ¢ )
+ Ny "(In (rp) sin ¢ + ¢ cos o 3)]
+e™"[M,*(In(rp) cos ¢ — ¢ sin $3)
+ Ny*(In (rp) sin ¢ + ¢ cos )]} 67)

As before, ¢ are defined in eqn (39) and M,*, N;* are related to A; and B,.

(b) p is a multiple root
Let us consider first the case in which p is a double root. Then, in addition to eqn (66), we
also have the solution

g = Aza%(r-- “In Z)+B;d£§-(ﬁ-;Z"‘ In Z). (68)
However, since

d - z -~
3 02 1n2)=(fij—%f;i)z nZ

__L 7k . Fr-x-iy L K __ Go-x-t
+ 36 (27 - ZZ7" )+ 36 w2l 'InZ 69
where use has been made of eqn (44), only the last term provides a new solution. The rest of the

terms in eqn (69) have appeared in eqns (66), (32) and (46). Therefore, a new solution when p is
a double root is

a;i=A2§%7 222 1nz-325’-;¢’. #ZZ ' Z (70)

The real or imaginary parts of eqn (70) have the expression which is obtained from eqn (67)
with ¢ 7 replaced by (¢§ —2¢).

Similarly, if p is a triple root, it is not difficult to show that the new solution is obtained from
eqn (67) by replacing ¢j; by (¢ — 4¢).

We see from eqn (67) that o;; has the singularity of r~¢ In r. The existence of a solution of eqn
(67) depends on the existence of a solution for A and dA/d« in eqn (65). Since A is an element
of ¢; in eqn (33), the existence of A and dA/dx depends on the existence of a solution for ¢; and
dcjfdx from the following equations

Kic;=0 e2)]
Kij(dC;de) + (dK;jde)Cj ={, a2

A discussion of the solution of eqns (71) and (72) can be found in[3].
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11. STRESS NEAR THE VERTEX WHEN « IS.A TRIPLE ROOT
When « is a triple root, one can follow the same reasoning as in the previous section for a
double root «. Therefore, the new solution for a triple root « is obtained by replacing d/d«x by
d*/dx? in eqns (63) and (64). Equation (66) then is replaced by

0 = Ayr,Z™"(In Z)* + By7Z " (In Z) 3

and eqn (67) is modified by replacing In (rp) by [In (rp)]* — ¢, which is the real part of (In Z)
and ¢ by 2¢ In (rp), which is the imaginary part of (In Z)™.

12. GENERAL EXPRESSION

We can summarize the results obtained so far in the following form. Let n, be the
multiplicity of p and m, be the multiplicity of . If we write

oy =rFy(r, ) (74a)

then F; consists of a linear combination of the real and imaginary parts of the following
expression

typ~¢ e**{In (rp) £ iy} *{cos [by — & — 2(n — 1)¢ ¥ 1 In (rp)] (74b)
+isin[b; ~ & = 2n~ 1)y F 1 1n(rp)]}

for each p and for all integers m and n subjected to the limitations
I=sm=m, l=n=sn,<3. (T4c)

As we stated before, p and ¢ depend on # but not on r.

13. SINGULARITY AT A CRACK TIP FOR ANISOTROPIC SOLIDS
Consider an infinite anisotropic solid with a crack plane which is located at x, <0 of the (x;,
x3) plane. Hence, 05;=0, (=1,2,3) at 8 = = 7. Using eqn (27a), eqn (36) for 6 =7 and — =
reduces to

fz,{M| Cos (sz "‘f‘l’f)‘i" N, sin (bz,' - §‘u’)}+ =0
tzj{M| Cos (bz; + &n)+ N sin (sz + fﬂ')} +...=0 75)
(j=1.23).

If we set £ =1/2, we have

t2{M; sin (by) — Ny cos (b} +- - =0
(=123

Equation (76) consists of 6 equations for M,, N, . . .and can be written in the form of eqn (33) with
¢; = 0. Since each of the three pairs of equations in eqn (76) are identical, ¢ = 1/2 is at least a tri-
ple root of the determinant K. We can therefore let £ = 1/2, = 0, m, = 3 in eqns (74). Disregard-
ing the dependence on 6, the singularities at the crack tip in a general anisotropic material are
r~" and possibly r"*?In r and r~"*(In r). The existence of r"In r and r~"?(In r)? depends on
the existence of a solution for ¢;, dc/dx, d’c/dx? from eqns (71) and (72) and an equation
obtained by differentiating eqn (72) with «.

For isotropic materials, u; is uncoupled from u; and u, and hence £ = 1/2 is a double root of
the determinant K. The singularities at the crack tip are 72 and possibly " In r if a solution
for c; and dcj/dx exists. It can be shown that no solutions for ¢; and dcj/dx exist and therefore
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the singularity r'In r is not present at the crack tip of isotropic materials even though ¢ = 1/2
is a double root.

Acknowledgements—The work presented here is supported by the U.S. Army Materials and Mechanics Research Center,
Watertown, Massachusetts through contract DAAG 46-79-C-0045.

B
2,

[T %

(- ]

10.
. D.M. Barnettand J. Lothe, Synthesis of the sextic and the integral formalism for dislocations, Greens function, and surface

REFERENCES
M. L. Williams, Stress singularities resulting from various boundary conditions in angular corners of plates in
extension. J. Appl. Mech. 19, 526-528 (1952).
D. B. Bogy, On the problem of edge-bonded elastic quarter-planes loaded at the boundary. Int. J. Solids Structure 6,
1287-1313 (1970).

. J. P. Dempsey and G. B. Sinclair, On the stress singularities in the plane elasticity of the composite wedge. J. Elasticity

9, 373-391 (1979).

. J. P. Dempsey, The wedge subjected to tractions: a paradox resolved. J. Elasticity, 11, 1-10, (1981).
. 8. G. Lekhnitskii, Theory of Elasticity on an Anisotropic Elastic Body (translated by P. Fern). Holden-Day, San

Francisco (1963).

. S. S. Wang and 1. Choi, Boundary layer thermal stresses in angle-ply composite laminates. Modern Developments in

Composite Materials and Structures ASME, p. 315-341, (Edited by J. R. Vinston) (1979).

. A.E.Green and W, Zerna, Theoretical Elasticity, Chapt 6. The Clarendon Press, Oxford (1954).
. D. B. Bogy, The plane solution for anisotropic elastic wedges under normal and shear loading. J. s.ppl. Mech. 39,

1103-1109 (1972).

. M. C. Kuo and D. B. Bogy, Plane solutions for the displacement and traction-displacement problems for anisotropic

elastic wedges. J. App. Mech. 41, 197-203 (1974).
A. N. Stroh, Steady state problems in anisotropic elasticity. The J. Math. and Phys. 41, 77-103 (1962).

waves in anisotropic elastic solids, Phys. Norv. 7, 13-19 (1973).

. P. Chadwick and G. D. Smith, Foundations of the theory of surface waves in anisotropic elastic materials. Advances in

Appl. Mech. 17, 303-376 (1977).

. M. Kassir and G. Sih, Three-Dimensional Crack Problems: A New Selection of Crack Solutions in Three-Dimensional

Elasticity. Noordhoff, Amsterdam (1975).



